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 Abstract - This study proposes a modeling framework for 

optimal online 5G service provisioning, based on low computational 

complexity machine learning techniques such as Neural Network 

(NNs). NNs are trained to take optimal decisions adopting an offline 

Integer Liner Programming (ILP) model. This framework is used 

to solve the generic joint Fronthaul (FH) and Backhaul (BH) service 

provisioning problem over a converged high capacity and flexibility 

optical transport aiming at minimizing the overall energy 

consumption of the 5G infrastructure. Our modeling results 

indicate that the proposed approach adopting NN based real time 

service provisioning can provide very similar performance to the 

one derived adopting the high complexity but accurate ILP 

approach. 
 

 Index Terms - Machine Learning, Optimization, 5G, ILP, 

LSTM, MLP, optical transport. 

 

I. INTRODUCTION 

s the demand for high-speed mobile internet access 

connectivity increases at a rapid pace, Radio Access 

Networks (RANs) deployments need to be transformed into 

open, scalable and dynamic ecosystems able to support a large 

variety of demanding applications and services in a flexible and 

efficient manner. The fifth generation (5G) mobile networks 

address this need through a set of hardware and software 

technology innovations targeting both the data and the control 

plane. Suitable solutions include the adoption of new centralized 

control and management frameworks based on Network 

Functions Virtualization (NFV)/Software Defined Networking 

(SDN) principles. In addition, new architectural models allow to 

migrate from highly distributed and inefficient structures to more 

centralized approaches relying on concepts such as the Cloud-

RAN (C-RAN) approach. C-RAN and its more recent variant 

including the notion of dynamic functional splits [1] introduce 

the need for fronthaul (FH) services interconnecting remote units 

(RUs) with processing units to allow centralization and 

ultimately softwarization of the RAN. Through pooling and 

coordination gains of softwarized/centralized RANs, significant 

cost reduction as well increased scalability and flexibility over 

current RAN solutions can be achieved.   

To successfully deploy the concept of softwarized RAN together 

with the increased backhaul (BH) requirements imposed by the 

current and upcoming 5G services at the data plane, there is a 

need for a high capacity transport network interconnecting the 

remote antennas with the compute resources where softwarized 

                                                           
 

versions of the RAN protocol stack are executed. This will be 

enabled by a control plane solution able to manage and optimize 

the operation of a large number of highly heterogeneous network 

and compute elements, taking decisions related to: i) optimal 

embedding of service requests and creation of service chains over 

the converged network resources [2], [3], ii) optimal 

infrastructure slicing across heterogeneous network domains [4], 

iii) optimal sharing of common resources in support of 

Information and Communication Technology (ICT) and vertical 

industry services [5], iv) optimal fronthaul deployment strategies 

including optimal placing of central units with respect to remote 

units, functional split selection etc. [6], [7].  

These problems are traditionally solved by a centralized 

controller considering in many cases multiple objectives and 

constraints (ranging from Capital and Operational Expenditure 

minimization, energy consumption, latency, resource availability 

etc.), adopting a variety of mathematical modeling frameworks 

based on integer linear [8] and non-linear [9] programming, 

stochastic linear and nonlinear programming formulations [10] 

etc. Although these schemes can be effectively used to identify 

the optimal operational points of the whole system, their 

increased computational complexity and slow convergence time 

makes them unsuitable for real time network deployments. To 

cope with the increasing computational complexity inherent in 

these models, alternative modular optimization schemes have 

been proposed. These aim at decomposing large optimization 

problems into smaller and easier subproblems that are able to 

handle a large number of variables.  

Towards this direction, this study proposes a modular framework 

to enable optimal 5G service provisioning taking advantage of 

the optimal decisions taken through offline tools based on Integer 

Linear Programming (ILP) and less computationally intensive 

online tools based on Neural Networks (NNs). More specifically, 
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Figure 1: Provisioning of FH and BH services over a common 5G network 

infrastructure. 
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the offline ILP model is first used to create a set containing the 

optimal design policies for converged 5G network environments. 

NNs then use the output of the ILP as a training set. Once NNs 

have been trained, they can be used by the centralized controller 

for real time optimal decision making. To demonstrate the 

efficiency of the proposed technique, in the present study we 

consider the generic joint FH and BH service provisioning 

problem over a converged high capacity and flexibility optical 

transport network environment [4]. In this converged network 

part of the optimization problem is associated with identifying 

the optimal fronthaul service. This is directly related with the 

identification of the optimal split option adopted [4]. To solve the 

problem of optimizing the fronthaul services, a NN model is 

proposed to identify, in real time, the optimal functional split for 

each RU. Although NNs have been widely adopted to model 

various problems with remarkable performance in 

telecommunication networks (see [13]-[18]), to the best of the 

authors knowledge this is the first time where ILP and NNs are 

appropriately combined for the design of converged 5G 

Networks.  

The rest of the paper is organized as follows. Section II provides 

a brief description of the problem under investigation, 

emphasizing on the offline ILP scheme and the proposed two-

stage NN model. Optimal design strategies of the proposed NN 

model are provided in Section III whereas performance 

evaluation under a realistic network configuration is carried out 

in Section IV. Finally, Section V concludes the paper.  

II. PROBLEM DESCRIPTION 

This paper focuses on the generic case of a converged 5G 

infrastructure interconnecting a set ℛ of R remote units (RUs) 

with a set � of S Central Units (CUs). This infrastructure, 

integrates wireless access and optical transport networks together 

with compute elements and is used to support FH and BH 

services. As already discussed for the FH services, we consider 

the dynamic functional split option approach, where the 

baseband signal processing tasks of the antennas can be divided, 

allocating some functions at the RUs and the remaining ones at 

the CUs. As discussed in [4], the decision to execute these 

functions locally or remotely depends on various parameters 

including the network topology, the availability of resources, the 

service characteristics etc. For the BH services, we consider 

content delivery type of services, where mobile devices offload 

their compute intensive tasks to the cloud [4]. For this type of 

services, specific compute and network resources need to be also 

reserved across the converged 5G infrastructure. A graphical 

representation of this concept is shown in Figure 1.  

To date, the problem of joint FH/BH service provisioning over a 

common infrastructure has been formulated and solved based on 

Integer Linear Programming (ILP) [19]. Specifically, assuming 

that �� , �� is the set of FH and BH demands, respectively, ℰ is 

the set of links, ��, the cost per link 
 in the infrastructure 

with 
 ∈ ℰ, �� the remote processing cost at � ∈ �, ��  the 

processing cost at the RU � ∈ ℛ measured in Giga Operations 

per Second- GOPS, ���,�, ���,� is the link 
 capacity allocated 

for FH and BH services,  ���,�, ���,� is the processing capacity 

for the FH/BH services and �� is the capacity of link 
, then, the 

joint FH/BH optimization problem can be formulated as follows:  

 

min ℱ ��, �� =  ℱℋ��, ��, ℬℋ��, ��#     �1� 

 

where  

 

ℱℋ��, �� = % ���&ℰ
���,� + % �����,��&�

+ % �( ���,((&�)
                       �2+� 

 

ℬℋ��, �� = % ,�� − ���,� − ���,�./0
�&ℰ
+ % ,1� − ���,� − ���,�./0

�&�
�22� 

 

subject to capacity, functional split and demand constraints. �2+� 

minimizes the expected cost for the FH services while �22� the 

 
Figure 3: Construction of the training set that will be used for the design of 

the NN-based 5G optimization framework. The offline optimization block 

represents the ILP model, the solution of which gives the optimal baseband 

split for each RU. The optimal baseband splits as they have been obtained 

by the ILP and the traffic statistics as they collected by the RUs constitute 

the training set of the MLP-NN models. MLP-model learns to map each 

value of traffic statistics to the value of the optimal functional split through 

the backpropagation algorithm for each RU. 

 

 
Figure 2: NN model-based, LSTM and MLP, for the optimization of the 5G 

network in the upcoming time instants.  The input of the LSTM model is the 

traffic at time step t and the output is the traffic at next time step t+1. The 

value of traffic as derived from the LSTM is given as input to the MLP which 

can predict the optimal functional split in upcoming time instant. 

 

 



 

associated costs for the BH services. A description of the ILP-

based modeling approach together with the relevant 

implementation details is given in [19] . Using as inputs network 

topology details and traffic statistics, the location where each 

function/task will be processed together with the required 

network and compute resources can be determined. Although the 

above-mentioned optimization framework can effectively 

identify the optimal operational point of the whole system, its 

increased computational complexity and its slow convergence 

time makes it impractical to optimize the operation for real time 

network deployments. To address this limitation, a two-step 

Neural Network-based optimization framework is proposed. 

This framework allows real time identification of the optimal 

operational strategies per RU. In the first step, using a specific 

set of training data, a novel Multilayer Perceptron (MLP) - based 

NN model is constructed that in-real time can identify the 

optimal operational policies for the whole 5G infrastructure. A 

high-level view of this process is shown in Figure 3 for a specific 

case where the MLP-NN is used to identify the optimal split per 

RU. To achieve this, a training set combining data from history 

traffic statistics as well as data extracted from the offline - 

optimization framework described above is considered. An 

algorithmic approach that allows the identification of optimal 

MLP-NN architecture is provided in the following section.  

Once the model has been trained, the MLP-NN model is 

combined with a trained Long Short-Term Memory (LSTM) NN 

model used for traffic forecasting. This aims at identifying the 

optimal operating conditions for the 5G infrastructure in the 

upcoming time periods. The flowchart of this process is provided 

in Figure 2. 

III. REAL TIME OPTIMIZATION FOR 5G 

A. Artificial Neural Network Preliminaries 

Artificial NNs are defined as systems of interconnected 

computational units, known as neurons, that interact with the 

environment. Each neuron has a non-linear, differentiable 

function, known as activation function, used to compute a 

weighted sum of the outputs of the previous-layer. In NNs, 

knowledge is stored in interneuron connection strengths, known 

as synaptic weights using a learning algorithm. The learning 

algorithm is a function that updates the value of synaptic weights 

during the learning operation. The Backpropagation algorithm is 

the most popular learning algorithm for training NNs and 

comprises two phases, the forward phase and the backward 

phase. Through the first phase, the signal is transmitted from the 

input to the output on a layer by layer basis, keeping the synaptic 

weights’ unaltered. In the second phase, the comparison between 

the network’s output and the desired response leads to an error 

signal. The error signal is propagated backwards through the 

network, starting from the output, and then the synaptic weights 

are re-evaluated to minimize the loss function. The loss function 

is a function that calculates the divergence between predicted and 

expected network’s response values [12]. Figure 4 shows a 

typical MLP neural network with J hidden layers over which the 

backpropagation algorithm is applied. 

 

Figure 4: Graphic illustration of an MLP NN structure with backpropagation 

algorithm. 

Table 1: Overview of the Backpropagation Algorithm applied to the MLP-NN  

Parameters: 

M = dimensionality of the input space and number of neurons in hidden 

layers, m = 1,2, …, M 

J = number of hidden layers, j = 1,2, …, J 

K = number of neurons in output layer, k = 1,2, …, K 

N = number of epochs, n = 1,2, …, N 

34=synaptic weight vector of neuron m 

d = desired response vector 

y = neuron output 
56 =local gradient at neuron k 

η = learning rate 
76 = error 
Initializations: 

Set the synaptic weights of the algorithm to small values selected from 

uniform distribution. 

Computations: 

- If neuron k is an output neuron then: 

(3.1) �6�8�  = ∑ 364�8� ∙ ;<4�8�=4>? + @6   
(3.2) ;6�8�  = A��6�8� �    
(3.3) 76�8� = B6�8� − ;6�8�  
(3.4) C�8� = ∑ 76D�8�/D6FG  

(3.5) H36I�8� = −J KC�8�
K36I�8�  

(3.6) 
KC�8�

K36I�8�   =  −76�8�AL
6M�6�8�N ∙ ;OI�8�  

(3.7) 56�8� = 76�8�A′6M�6�8�N 

(3.8) H36I�8� = −J 56�8� ∙ ;OI�8� 

�3.9� 36IL �8� = 36I�8� +  H36I�8�  
else if it is a hidden neuron at layer j: 

�3.10� �O4�8�  = ∑ 3O4�8� ∙ ;O/?,4�8� =4>? + @O4  
�3.11� ;O4�8�  = AM�O4�8� N 
�3.12� 76�8� = B6�8� − ;6�8� 
�3.13� C�8� = ∑ 76D�8�6FG /D 
�3.14� H3OI�8� = −J KC�8�

K3O4�8� 

�3.15� 5O4�8� = A′O4 W�O4�8�X ∙ ∑ 5O6�8� ∙Y6>? 3O6�8� 
�3.16� H3O4�8� = −J 5O4�8�;O/?,4�8� 
�3.17� 3O4L �8� = 3O4�8� +  H3O4�8� 

     
 



 

The modeling details of the backpropagation algorithm for the 

MLP network are summarized in Table 1. Specifically, if neuron 

k is an output neuron, then the linear combiner output �\�]� is 

calculated by the weighted sum of the inputs∙ _̂`�]� with the 

respective synaptic weights a\`�]� using equation (3.1) (see 

lower part of Figure 4 ). �\�]�  is then applied to an activation 

function b, which limits the amplitude of the output of neuron c 

(3.2) resulting to the final output of neuron c at the ]  iteration, 

namely ^\�]�. The estimation error at the output of neuron c is 

calculated through (3.3), while the total instantaneous error d�]� 

of the whole network is calculated using (3.4). The error is 

propagated backward and the correction ea\f  is applied to the 

synaptic weight a\f  (3.5) - (3.9). A similar set of equations is 

applied for the hidden neurons (3.10) - (3.17). 

Our objective is to identify an MLP network that maps any 

input g to the corresponding output ^. Output ^ is obtained from 

the solution of the corresponding ILP formulation, while g 

represents the set of history observations. As an example, 

consider the scenario for which we apply to the MLP a training 

set that comprises a set of pairs �g, ^�, where g represents the 

traffic statistics for a particular RU at a given point in time, while 

^ represents the functional split. The optimal functional split per 

RU over time has been obtained through the solution of the ILP 

model described in Sec. II. This training set is given as input to 

the MLP neural network in order to learn how to map each input 

g to the corresponding output ^. Once the system has been 

trained, the MLP can predict the functional split given any new 

data without solving the corresponding ILP. The parameters of 

the MLP model can be derived executing the algorithm of Table 

1 for different parameters’ values (batch size, number of hidden 

layers etc.). At the end of the experiments, the combination of 

parameter value is chosen according to their ability to maximize 

the prediction accuracy.  

B. Traffic forecasting using Long Short-Term Memory 

Neural Networks  

Long Short-Term Memory (LSTM) is a special case of Recurrent 

Neural Network (RNN) capable to learn long-term dependencies, 

since it can remember information that was acquired in previous 

steps of the learning process. LSTM contains a set of recurrent 

blocks, known as memory blocks, each of which has one or more 

memory cells. Each cell is composed of three basic units, the 

input, output and forget gate that are responsible to decide 

whether to forget, keep, update or output information that has 

been acquired previously. LSTM is the most successful model 

for predicting long-term time series [1].  

In the present study, the LSTMs are optimally designed to 

forecast the traffic load of each RU based on history traffic data 

available. The LSTM input vector corresponds to the traffic at an 

arbitrary time step t while the LSTM output vector corresponds 

to the traffic at time step t+1. To train the LSTMs, the dataset 

containing history measurements of each RU is split into two 

parts, the training set and the test set. The training set is used 

during the training of the LSTM network, while the test set is 

used to validate the effectiveness of each LSTM designed. To 

identify the optimal LSTM architecture for each RU, an 

extensive set of experimentations is performed. Given that the 

LSTM architecture can be fully characterized by the number of 

hidden layers, neurons, epochs and the batch size, our objective 

is to the identify how these parameters can be optimally 

combined to minimize the forecasting error.  This process is 

summarized as follows: 

Step 1- Batch size. The batch size is the number of training 

instances used in each iteration. The weights are updated after 

each batch propagation. We choose the value for the batch size 

that minimizes forecasting error keeping all other parameters 

constant.  

Step 2- Number of epochs: The number of epochs determine the 

maximum number of passes over the training dataset. Various 

values for the number of epochs are tested in order to identify the 

optimal one that minimizes the forecasting error. 

Step 3- Number of neurons. In this step, our objective is to 

identify the optimal number of neurons that achieves optimal 

traffic forecasting accuracy.  

Step 4 – Number of hidden layers. The last parameter that we 

study is the number of hidden layers. As before, after extensive 

experimentations we choose the number of hidden layers that 
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Figure 5: 5G network topology under investigation 
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minimizes the forecasting error calculated through the root-

mean-squared-error formula (RMSE). 

IV. NUMERICAL RESULTS 

A. Topology description and assumptions 

The validity of the proposed NN-based optimization framework 

is evaluated using the optical transport network topology 

presented in  [4] over which 21 RUs are deployed. The coverage 

area of each RU is shown in Figure 5. For this topology, mobile 

devices served by the corresponding RUs generate demands 

according to real datasets reported in [11]. Each RU is connected 

to the optical transport through microwave point-to-point links 

with 2 Gb/s bandwidth, and 45W power consumption. The 

optical transport has a single fiber per link, 4 wavelengths of 10 

Gb/s each per fiber, and minimum bandwidth granularity of 100 

Mb/s [4]. The processing requirements of the mobiles devices 

and the RUs are supported through a set of DCs. For this network 

topology, our objective is to design a NN model that 

approximates the optimal ILP described in Sec. II and solved in 

[4]. To keep the analysis tractable, the results provided are 

correspond to the optimal functional split of RU16, however, 

similar studies have been conducted for all compute/network 

elements of Figure 5 focusing on other parameters of interest 

such as, network capacity for optical links, compute  capacity for 

DCs, locations where demands are processed for demands etc. 

B. Neural Network/Learning topology optimization 

To design the two-stage NN model using the LSTM/MLP 

models, the methodology presented in Sec. III is applied to all 

network components. For each component, our objective is to 

design an NN that approximates with very high accuracy the 

optimal policies obtained through the corresponding ILP model.   

 To identify the optimal NN models, the learning curves showing 

the RMSE as a function of the number of epochs, hidden layers, 

neurons and batch size are first obtained. Based on these curves, 

the optimal values of the parameters that minimize the 

corresponding error can be readily determined. A typical set of 

learning curves for the LSTM model of RU16 is shown in Figure 

6 and the corresponding optimal values are provided in Table 2. 

C. Traffic forecasting based on LSTM Neural Networks 

Once the optimal LSTM NN structure has been determined, the 

model is trained using the history dataset and the corresponding 

synaptic weights are determined. The test set is applied to the 

LSTM model to evaluate its forecasting performance. A snapshot 

showcasing the performance accuracy of the LSTM model for 

RU16 is illustrated in Figure 7 a), where an RMSE of 0.16 is 

obtained corresponding to a forecasting error in the order of 

0.3%.  

D. Prediction of operational parameters: Optimal 

Functional Split based on MLP Neural Networks 

Following a similar approach to the LSTM problem design, once 

the MLP network has been defined, the derived model is trained 

and validated using the training set obtained from the ILP 

formulation. Figure 7 b) shows the performance of the proposed 

model where it is observed that the MLP is able to identify the 

optimal functional split with a 95% accuracy.  

E. Total power consumption 

Finally, the performance of the proposed NN scheme is 

compared to the ILP based optimization approach presented in 

[4] in terms of total network power consumption. It is observed 

in Figure 8 that the power consumption over time for both 

schemes takes very close values, indicating the effectiveness of 

the proposed NN scheme to identify the optimal operational 

 
Figure 7: a) Traffic forecasting for RU16 using LSTM. b) Optimal functional split prediction for RU16 using the results obtained from the ILP and the MLP. 

Table 2:Parameter Settings of Neural Networks for the RU16 

 Batch Size Number of 

Epochs 

Hidden Layers of the 

Network 

Number of Neuron for 

Output Layer 

Activation Function 

for Hidden Layers 

Activation 

Function for 

Output Layer 

LSTM 2 80 6 hidden layers with 1 

neuron each layer 

1 Relu - 

MLP 2 600 1 hidden layer with 10 

neurons 

5 Relu  Softmax 

 



 

strategies of every network element. This clearly shows that 

online optimal service provisioning can be achieved taking a 

practical low complexity approach adopting machine learning 

techniques that can be trained to take real time very close to 

optimal decisions. In this context, the training process plays a key 

role and can be performed taking advantage of the optimal 

decisions provided through offline tools based on ILP. 

V. CONCLUSIONS 

This study proposes a modeling framework to enable optimal 

online 5G service provisioning based on low computational 

complexity machine learning techniques such as NNs, exploiting 

optimal decisions taken through offline tools based on ILP for 

training purposes. The offline ILP model is first used to create a 

set containing the optimal design policies for converged 5G 

network environments. NNs then use the output of the ILP as a 

training set and after being trained, they can perform real time 

optimal decisions. To demonstrate the efficiency of the proposed 

technique, we consider the generic joint FH and BH service 

provisioning problem over a converged high capacity and 

flexibility optical transport aiming at minimizing the overall 

energy consumption of the 5G infrastructure. Our results indicate 

that the proposed approach adopting NN based real time service 

provisioning can provide very similar performance to the one 

derived adopting the high complexity but accurate ILP approach. 
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Figure 8: Total Power consumption when applying the ILP and the proposed NN scheme  


